تحقیقات انجام شده درباره : ارزیابی نوسانات قیمت سهام با استفاده از شبیه سازی مونت ... |
GARCH-GED
GARCH-N
GARCH-N
MC
MC
نتایج پیش بینی خارج از نمونه برای افق یکماهه در جدول (۴-۷) نمایش داده شده است و در جدول (۴-۸) پیش بینی های انجام شده رتبه بندی شده است. همانطور که مشاهده می شود مدل گارچ با توزیع t بهترین پیش بینی را داشته است. طبق تابع زیان RMSE و MAE رتبه اول و طبق تابع زیان MAPE رتبه دوم را دارد. این نتیجه برای مدل گارچ با تابع توزیع t دور از انتظار نبود ، زیرا همانطور که قبلا ذکر شد داده های سری زمانی بازده به صورت نرمال توزیع نشده اند. در مرتبه بعد مدل گارچ با تابع توزیع GED قرار دارد و سپس مدل گارچ با تابع توزیع نرمال. پیش بینی انجام شده توسط شبیه سازی مونت کارلو در رتبه آخر قرار دارد. اما همانطور که آماره آزمون دایبولد ماریانو نشان می دهد تفاوت معناداری در پیش بینی مدل گارچ و شبیه سازی مونت کارلو وجود ندارد و اختلاف مقدار توابع زیان آماری برای پیش بینی های این دو روش چندان محسوس نیست.
فصل پنجم: بحث و نتیجه گیری
۵-۱٫ نتیجه گیری
با توجه اهمیت موضوع نوسان که پیشتر از این به آن اشاره شد و عدم وجود را ه حل قطعی برای این موضوع، در این پژوهش سعی شده تا عملکرد روش شبیه سازی مونت کارلو در این حوزه بررسی شود. با توجه به اینکه هدف اصلی این تحقیق پیش بینی نوسان با بهره گرفتن از شبیه سازی مونت کارلو می باشد، این هدف در قالب دو فرضیه بیان شد. فرضیه اول بیان میدارد که تفاوت معناداری در پیش بینی نوسانات قیمت سهام توسط شبیه سازی مونت کارلو با پیش بینی مدل گارچ وجود دارد. برای بررسی این فرضیه ابتدا به پیش بینی نوسان توسط مدل گارچ و روش شبیه سازی مونت کارلو در افق یکماهه پرداختیم و با توجه به اینکه داده های سری روزانه از تابع توزیع نرمال تبعیت نمی کند از سه تابع توزیع نرمال، t-استیودنت و GED برای مدل گارچ استفاده کردیم . ارزیابی نتایج بدست آمده توسط سه تابع زیان آماری RMSE ، MAE و MAPE نشان میدهد که مدل گارچ پیش بینی دقیقتری از نوسان نسبت به شبیه سازی مونت کارلو دارد و از میان توابع توزیع، تابع توزیع t-استیودنت برای مدل گارچ عملکرد بهتری را نشان میدهد. اما برای بررسی معناداری این تفاوت در پیش بینی از آزمون دایبولد-ماریانو کمک گرفته ایم که نتیجه آن حاکی از این است که پیش بینی های مدل گارچ و روش شبیه سازی مونت کارلو تفاوت معناداری ندارد و بنابراین فرضیه اول رد می شود.
فرضیه دوم به این شکل مطرح شد که، با بهره گرفتن از شبیه سازی مونت کارلو می توان نوسانات قیمت سهام را برای دوره خارج از نمونه پیش بینی نمود. برای بررسی این فرضیه نیز از توابع زیان آماری ذکر شده استفاده نمودیم که نتایج نشان میدهد با بهره گرفتن از شبیه سازی مونت کارلو می توان نوسان قیمت سهام را پیش بینی نمود و فرضیه دوم تائید میگردد.
بنابراین نتایج کلی حاکی از این است که می توان برای پیش بینی نوسان قیمت سهام از روش شبیه سازی مونت کارلو استفاده نمود.
۵-۲٫ پیشنهادات
نتایج این تحقیق می تواند مورد استفاده دو گروه عمده قرار گیرد: سرمایه گذاران و سیاست گذاران. سرمایه گذاران، طیف وسیعی از فعالان در بازار را شامل می شود که عبارتند از سرمایه گذاران خرد و کلان، مدیران سبد سرمایه در شرکت های سرمایه گذاری، صندوق های سرمایه گذاری مشترک، صندوق های پوششی، صندوق های خصوصی و … . سیاست گذاران اقتصادی گروه دیگری از استفاده کنندگان از نتایج این پژوهش می باشند. همان گونه که بیان شد پیش بینی نوسان پذیری در بازارهای مالی یکی از ابزارهای مهم کنترل نوسان در اقتصاد می باشد. افزایش نوسان در بازدهی دارایی ها و ابزارهای مالی، ریسک سرمایه گذاری را بالا می برد و به کاهش اطمینان و اعتماد سرمایه گذاران منجر می شود. به این ترتیب سرمایه ها در جستجوی مکانی امن تر ، از بازار مالی مهاجرت خواهند نمود. ادامه این وضعیت به ایجاد جو روانی منفی می انجامد و سقوط قیمت ها تشدید خواهد شد. با خروج سرمایه از بازار، نظام تامین مالی دچار اختلال می شود و به این ترتیب بحران به بخش واقعی اقتصاد منتقل می گردد. سیاست گذاران اقتصادی برای کنترل چنین شرایطی نیاز به ابزارهای متعددی دارند که یکی از این ابزارها سیستم های پیش بینی کننده متغیرهای پیش رو در اقتصاد، همانند نوسان پذیری است.
پیشنهادات برگرفته از نتایج تحقیق
با توجه به نتایج تحقیق پیشنهاد می شود:
- در این پژوهش برای آزمون فرضیات، بازه زمانی یکماهه درنظر گرفته شده است و پیشنهاد می شود توانایی شبیه سازی مونت کارلو در پیش بینی نوسان در بازه های زمانی بلندمدت و کوتاه مدت مورد ارزیابی قرار گیرد.
- در این پژوهش برای انجام شبیه سازی از روش شبیه سازی مونت کارلو با بهره گرفتن از حرکت هندسی بروانی و برای تولید اعداد تصادفی از دنباله تصادفی در بازه صفر تا یک استفاده شد. از آنجاکه انجام شبیه سازی با بهره گرفتن از روش های مختلف امکان بالا رفتن دقت نتایج وجود دارد، لذا پیشنهاد می شود از دیگر روش های شبیه سازی مانند شبیه سازی شبه مونت کارلو و شبیه سازی تصادفی شبه مونت کارلو برای پیش بینی نوسان تحقیقاتی صورت گیرد.
پیشنهادات برای تحقیقات آتی
- با توجه به کاربردهای فراوان شبیه سازی مونت کارلو در حوزه علوم مختلف، می بایستی توانایی این روش در مسائل مختلف مالی مورد بررسی قرار گیرد.
- در پژوهش های پیشین مدل های مختلف زیادی برای پیش بینی نوسان مورد استفاده قرار گرفته و هیچ مدلی قطعی برای این موضوع وجود ندارد. لذا پیشنهاد می شود نتایج شبیه سازی مونت کارلو برای پیش بینی نوسان با نتایج دیگر مدل ها نیز مقایسه گردد.
فهرست منابع
منابع فارسی
کتب
راعی، ر؛ تلنگی، ا. ۱۳۸۳٫ مدیریت سرمایه گذاری پیشرفته . تهران :انتشارات سمت، ۶۰۰ صفحه
پایان نامه ها
ابراهیمی، ع. ۱۳۸۵٫ مدل های گارچ و آرچ و کاربرد آنها در تحلیل های اقتصادی . پایان نامه کارشناسی ارشد، دانشگاه اصفهان دانشکده علوم
سعیدی، ح. ۱۳۹۱٫ پیش بینی نوسانات بازدهی با بهره گرفتن از مدل های ترکیبی گارچ-شبکه عصبی مصنوعی. پایان نامه کارشناسی ارشد، دانشکده مدیریت دانشگاه تهران.
صمدی گمچی، ب. ۱۳۸۶٫ مدلسازی تلاطم در شاخص قیمت بورس تهران با بهره گرفتن از مدل های گارچ و معرفی الگوی مناسب برای تعیین ارزش در معرض خطر . پایان نامه کارشناسی ارشد. دانشکده مدیریت و اقتصاد، دانشگاه صنعتی شریف،
معارفیان، م. ۱۳۸۹٫ سنجش کارائی شبیه سازی شبه مونت کارلو در تخمین ارزش در معرض خطر برای بورس اوراق بهادار تهران. پایان نامه کارشناسی ارشد، دانشکده مدیریت دانشگاه تهران.
نظیفی نائینی، م. (۱۳۹۰). مدلهای گارچ در پیش بینی نوسانات بازار سهام. پایان نامه کارشناسی ارشد، دانشکده اقتصاد دانشگاه رازی.
پژوهش ها
ابونوری، ا؛ موتمنی، م. ۱۳۸۵ . بررسی همزمان اثر اهرمی و بازخورد نوسانات در بازار سهام تهران، تحقیقات اقتصادی، شماره ۷۶ ، ص ۱۰۱ تا ۱۱۷
پیروتی، ج؛ جعفری، ق؛ ایزدی نیا،ن. (۱۳۹۰). تحلیل چند فراکتالی نوسانات روندزدایی شده شاخص کل بورس اوراق بهادار تهران. فصلنامه بورس اوراق بهادار، شماره۱۴، ص۱۱۵-۱۳۴
تهرانی ،ر؛محمدی،ش؛ پورابراهیمی، م. ۱۳۸۹ . مدل سازی و پیش بینی نوسانات بازده در بورس اوراق بهادار تهران، تحقیقات مالی دوره ۱۲ شماره ۳۰ ص ۲۳ تا ۳۴
رجبی پورمیبدی، ع؛ فرید، د؛ میرفخرالدینی، ح. ۱۳۸۹٫ کاربست VAR و انتخاب پرتفوی بهینه با بهره گرفتن از شبیه سازی مونت کارلو دربورس اوراق بهادار تهران. دانش و توسعه، شماره ۳۱، ص ۹۶-۱۱۹
سلامی،ا. ۱۳۸۲٫ مروری بر شبیه سازی مونت کارلو، پژوهشنامه اقتصادی،شماره ۸، ص۱۱۷-۱۳۸
فرم در حال بارگذاری ...
[یکشنبه 1400-08-02] [ 04:00:00 ق.ظ ]
|