پایان نامه تحلیل چند متغیره تابع چندکی و کاربردهای آن- فایل ۹ |
[۵] Chaudhuri, P. (1996), On a geometric notion of quantiles for multivariate data, Journal of the American Statistical Association 91, 862–۸۷۲٫
[۶] Deheuvels, P., J. H. J. Einmahl, D. M. Mason and F. H. Ruymgaart (1988), The almost sure behavior of maximal and minimal multivariate kn-spacings, Journal of Multivariate Analysis 24, 155–۱۷۶
[۷] Dibucchianico, A., J. H. J. Einmahl and N. A. Mushkudiani (2001), Smallest nonparametric tolerance regions, Annals of Statistics 29, to appear.
[۸] Donoho, D. L. and M. Gasko (1992), Breakdown properties of location estimates based on half-space depth and projected outlyingness, Annals of Statistics 20, 1803–۱۸۲۷٫
[۹] Dumbgen, L. (1992), Limit theorems for the simplicial depth,0 Statistics and Probability Letters 14, 119–۱۲۸٫
[۱۰] Einmahl, J. H. J. and D. M. Mason (1992), Generalized quantile processes, Annals of Statistics 20, 1062–۱۰۷۸٫
[۱۱] Ferguson, T. S. (1967), Mathematical statistics: a decision theoretic approach, Academic Press, New York.
[۱۲] He, X. and G. Wang (1997), Convergence of depth contours for multivariate datasets, Annals of Statistics 25, 495–۵۰۴٫
[۱۳] Hettmansperger, T. P. and J. W. Mckean (1998), Robust nonparametric statistical methods, Arnold, London.
[۱۴] Hettmansperger, T. P., J. Nyblom and H. Oja (1992), On multivariate notions of sign and rank, in: Y. Dodge (ed.), L1-Statistical analysis and related methods, North-Holland , Amsterdam , 267–۲۷۸٫
[۱۵] Kemperman, J. H. B. (1987), The median of a finite measure on a Banach space, in: Y.Dodge (ed.), Statistical data analysis based on the L1-norm and related methods, North Holland, Amsterdam, 217–۲۳۰٫
[۱۶] Koenker, R. and G. Bassett (1978), Regression quantiles, Journal of the American Statistical Association 82, 851–۸۵۷٫
[۱۷] Koltchinskii, V. and R. M. Dudley (1996), On spatial quantiles, unpublished manuscript.
[۱۸] Koltchinskii, V. (1997), M-estimation, convexity and quantiles, Annals of Statistics 25,435–۴۷۷٫
[۱۹] Liu, R. Y., J. M. Parelius and K. Singh (1999), Multivariate analysis by data depth: descriptive statistics, graphics and inference (with discussion), Annals of Statistics 27,783–۸۵۸٫
[۲۰] Lorenz, M. O. (1905), Methods of measuring the concentration of wealth, Publication of the American Statistical Association 9, 209– ۲۱۹٫
[۲۱] Masse´, J.-C. (2000), Asymptotics for the Tukey depth process. Application to a multivariate trimmed mean, Preprint.
[۲۲] Masse´, J.-C. (2001), Asymptotics for the Tukey depth-based trimmed means, Preprint.
[۲۳] Masse´, J.-C. and R. Theodoresce (1994), Halfpane trimming for bivariate distributions, Journal of Multivariate Analysis 48, 188–۲۰۲٫
[۲۴] Mushkudiani, N. (2000), Statistical applications of generalized quantiles: nonparametric tolerance regions and P-P plots, Eindhoven University of Technology, Eindhoven.
[۲۵] Mushkudiani, N. (2001), Small nonparametric tolerance regions for directional data, Journal of Statistical Planning and Inference, to appear.
[۲۶] Nolan, D. (1992), Asymptotics for multivariate trimming, Stochastic Processes and Applications 42, 157–۱۶۹٫
[۲۷] Oja, H. (1983), Descriptive statistics for multivariate distributions, Statistics and Probability Letters 1, 327–۳۳۲٫
[۲۸] Polonik, W. (1999), Concentration and goodness-of-fit in higher dimensions: (asymptotically) distribution-free methods, Annals of Statistics 27, 1210–۱۲۲۹٫
-
- [۲۹] Robert Serfling (2002), Quantile functions for multivariate Analysis: approaches and applications Journal of statisticaneerlandica , (Vol.56,nr.2,pp.214-232)
[۳۰] SrflIing, R. (2001), Generalized quantile processes based on multivariate depth functions, with applications in nonparametric multivariate analysis, Journal of Multivariate Analysis, in press.
[۳۱] Small, C. G. (1987), Measures of centrality for multivariate and directional distributions, Canadian Journal of Statistics 15, 31–۳۹٫
[۳۲] Small, C. G. (1990), A survey of multidimensional medians, International Statistical Review58, 263–۲۷۷٫
[۳۳] Zuo, Y., H. Cui and X. He (2001), On the Stahel–Donoho estimator and depth weighted means of multivariate data, Preprint.
[۳۴] Zuo, Y. and R. Serfling (2000a), General notions of statistical depth function, Annals of Statistics 28, 461–۴۸۲٫
[۳۵] Zuo, Y. and R. Serfling (2000b), Structural properties and convergence results for contours of sample statistical depth functions, Annals of Statistics 28, 483–۴۹۹٫
[۳۶] Zuo, Y. and R. Serfling (2000c), Nonparametric notions of multivariate ‘‘scatter measure’’ and ‘‘more scattered’’ based on statistical depth functions, Journal of Multivariate Analysis 75, 62–۷۸٫
منابع فارسی
[۳۷] بهبودیان، جواد، ۱۳۷۹، روش های ناپارامتری، انتشارات دانشگاه پیام نور.
[۳۸] لی بین، ماکس انگلهارد، ۱۳۸۴، مقدمه ای بر احتمال و آمار ریاضی، ترجمه علی مشکانی، حسنعلی آذرنوش، ابوالقاسم بزرگ نیا، انتشارات دانشگاه فردوسی مشهد.
پیوست
برنامه نویسی ها
مقدمه
در این بخش دستورات برنامه نویسی برای بدست آوردن ناحیه های درونی و مشخص کردن چندک های چند متغیره، که بخش تئوری آن در این پایان نامه به طور مفصل در چهار فصل جداگانه بحث شده است و همچنین منحنی مقیاس بحث شده در بخش ۵-۱-۱ ، را ارائه می کنیم. برنامه ها در محیط برنامه نویسی R نوشته شده اند.
۱- دستور برنامه نویسی ناحیه های درونی و عمق ۵۰ نقطه ی تولید شده در توزیع نرمال دو متغیره
> library(depth)
library(MASS)
n=50
d=rep(0,n)
فرم در حال بارگذاری ...
[یکشنبه 1400-08-02] [ 07:09:00 ق.ظ ]
|